Lecture 1: Introduction

Lecturer : Jeffrey Everts , ⁵.³² jeffrey everts&fur. edup Material : Lecture notes (in progress Website: www.fuw. edu. ph/-jeverts/teaching/statphysb Organisation: Lectures on Wednesday , ¹²: 15-15 : ⁰⁰ , room ² . 06. Tutorials onThursday, ¹⁶ : 15-19: ⁰⁰ , room ¹ . 38 Examination : Mid-term (30%) , Final (40%) , hand-ins (30 %) Win Statistical Physics about ? Microscopic interpretation :

Examination: Nid-term (30.1), Final (40.1), hand-ins (30.1)

\nWhat is Statistical Physics about? Microscopic interpretation:

\nTypical physical system can be described by a Hamiltonian, e.g.

\nH(pnrau) =
$$
\frac{N}{2!} \cdot \frac{p!}{2!} + \frac{p!}{2!} (\vec{r}^{\prime\prime})
$$

\nFor a classical system, a second line is known to be given by the formula:

\nFor a classical system, a second line is known to the form $\{\vec{r}^{\prime\prime} = \vec{r}^{\prime\prime\prime} \text{ times the form $\vec{r}^{\prime\prime\prime} = (\vec{r}^{\prime\prime\prime}) \text{ times the form $\vec{r}^{\prime\prime\prime} = (\vec{r}^{\prime\prime\prime}) \text{ times the form $\vec{r}^{\prime\prime\prime} = \vec{r}^{\prime\prime\prime} \text{ times the form $\vec{r}^{\prime\prime\prime} = \vec{r}^{\prime\prime\prime\prime} = \vec{r}^{\prime\prime\prime\prime} \text{ times the form $\vec{r}^{\prime\prime\prime} = \vec{r}^{\prime\prime\prime\prime} = \vec{r}^{\prime\prime\prime\prime} \text{ times the form $\vec{r}^{\prime\prime\prime} = \vec{r}^{\prime\prime\prime\prime} \text{ times the form $\vec{r}^{\prime\prime\prime} = \vec{r}^{\prime\prime\prime\prime} \text{ times the form $\vec{r}^{\prime\prime\prime} = \vec{r}^{\prime\prime\prime\prime} \text{ times the form $\vec$$$$$$$$$$$$$$$$$

$$
Q_{\theta_{3}} = \frac{1}{\sqrt{1}} \sum_{\alpha=1}^{M} Q_{\alpha}
$$
\nwhere we measure long enough. (N+a)
\n $Q_{\theta_{3}} = \frac{1}{\sqrt{1}} \sum_{\alpha=1}^{M} Q_{\alpha}$ \n $Q_{\theta_{3}} = \sum_{\alpha} \left[\frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \right) - \frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \right) \right) \right) \right) \right) \right) \right]$ \nwith $Q_{\theta_{3}} = \sum_{\alpha} \left[\frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \right) - \frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} \right) \right) \right]$
\n $\Rightarrow Q_{\theta_{3}} = \sum_{\alpha} P_{\alpha} Q_{\alpha} =: \begin{cases} \frac{1}{\sqrt{1}} & \text{if } Q_{\alpha} \\ \frac{1}{\sqrt{1}} & \text{if } Q_{\alpha} \\ \frac{1}{\sqrt{1}} & \text{if } Q_{\alpha} \end{cases}$ \n $\Rightarrow \sum_{\alpha} P_{\alpha} =: \begin{cases} \frac{1}{\sqrt{1}} & \text{if } Q_{\alpha} \\ \frac{1}{\sqrt{1}} & \text{if } Q_{\alpha} \end{cases}$ \n $\Rightarrow \sum_{\alpha} P_{\alpha} =: \begin{cases} \frac{1}{\sqrt{1}} & \text{if } Q_{\alpha} \\ \frac{1}{\sqrt{1}} & \text{if } Q_{\alpha} \end{cases}$ \n $\Rightarrow \sum_{\alpha} P_{\alpha} =: \begin{cases} \frac{1}{\sqrt{1}} & \text{if } Q_{\alpha} \\ \frac{1}{\sqrt{1}} & \text{if } Q_{\alpha} \end{cases}$ \n $\Rightarrow \sum_{$

Uniform distribution of microscopic states with same energy and system size. Equilibrium is the most "random" state. For example for discrete energy levels $P_{\mathcal{V}}$ = NIVIE) $S_{E, E_{V}}$

Normalisation: $\sum_{v} P_{v} = 1$. \Leftrightarrow $\Omega(N_1 V_1 E) = \sum_{v} \delta_{E_1 E_v}$. Gonfinuous (classical) case: $f_m(T) = \frac{S(E-H(T))}{W(E,V,N)}$ where $W(E,V,N) = \int dT \delta(E-H(T)).$ Link to thermodynamics $S = k_B ln \Omega(N_1V_1E)$. Les The collection of microstates subjected to macroscopic constraints is called an ensemble. $E-q$. (N_1V_1E) fixed is called microcanonical ensemble. From the microcanonical ensemble other ensembles can be derived For example, canonical ensemble. (N,V,T) fixed. States given by $H(\psi_v) = E_v(\psi_v)$ $N_{s}+N_{R}=N$ $\left|\begin{array}{c} \boxed{6} \end{array}\right|$ (N_1V,E) fixed. $E_S + E_R = E$ V_{S} \uparrow V_{R} = \vee . System is in equilibrium with bath: $\beta := \frac{1}{k_0 T} = \left(\frac{\partial ln D}{\partial E}\right)_{N_1 V}$
We take reservoir in thermodynamic limit: $\frac{N_R}{N_S}, \frac{V_R}{V_S}, \frac{E_R}{E_S} \rightarrow \infty$
- E_{12}, E_{22} $Suppose E_S \in E_P$. => S(MIVE) $E_{S}E_{V} = \Omega_{S}(N_{S},V_{S},E_{V})\Omega_{R}(N_{R},V_{R},E-E_{V}).$ Fandamental assumption: Pues Ω_R (NR, VR, E-EV)
of stat mech = exp [ln [en (NRIVRIE-EU)]

$$
E_{\nu}CE
$$
\n
$$
=0 \text{ ln } \Omega_{R} (E-E_{\gamma}) = ln \Omega_{R} (E) - \left(\frac{\partial ln \Omega_{R}}{\partial E}\right)_{N_{R,V_{R}}} E_{\gamma} + ...
$$
\n
$$
=0
$$
\n<math display="</math>

Also note that: $\angle E$ = $\sum_{v} P_v E_v$ $\sum_{z} \sum_{v} e^{-\beta E_v} E_v$ $\sum_{z} \sum_{v} \frac{\partial}{\partial (-\beta)} e^{-\beta E_v}$ $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\sqrt{1-\frac{3}{2}}=\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\sqrt{1-\frac{3}{2}}=\frac{3ln 2}{10\sqrt{1-\frac{3}{2}}}}$

Compare: $E=F+TS=F-T(\frac{0F}{2T})_{N,V}=F+\beta(\frac{0F}{2})_{N,V}$ $(dFz-SdT-pdV+{\mu}dW)$ $=\left(\frac{\partial \beta}{\partial \beta F}\right)^{M/\Lambda}$ $\Rightarrow \beta F = -\ln \frac{2}{\pi}(N_1V_1T)$ hink to thermodynamics.

Other ensemble:
\nGrand canonical ensemble
$$
(\mu_1 V_1 T)
$$
 fixed.
\n $\frac{17}{11}$ $(\mu_1 V_1 T) = \sum_{N=0}^{\infty} e^{\frac{3}{2} \mu_1 N} \frac{2}{2} (N_1 V_1 T)$ (grand-cononical partition
\nwith link to thermodynamics: $\frac{1}{2} \int_{\mu_1} (\mu_1 V_1 T) = -\frac{1}{2} (N_1 V_1 T)$,
\n $\frac{1}{2} (N_1 V_1 T) = F(\frac{1}{2} N_2 V_1 T) - \mu \leq N$ (grand potential)
\nSo we see always that:
\n β (Thermodynamic)
\n $= -\log \left(\frac{partition}{numchion} \right)$,
\n $\frac{1}{2} \int_{\frac{1}{2} \mu_1} \frac{1}{2} \frac{1$

 \odot

⑦ In Stat Phys ^B we take it ^a step further : · Partition functions of interacting systems \mathcal{L} mostly classical because for quantum systems ns of interacting systems
mostly classical because for guantum systems
more tools are needed, eg. second guantisation.

· Phase transitions .

* Some elementary concepts in non-equilibrium systems - Phace to
Some ele
Placement
Cluant

Placement

- · Quantum many-body theory.
- · Critical Phenomena-
- · Non-eg. Stat phys